Quick Start Guide¤
This guide walks you through a simple usage example of the ts-shape
library to load, transform, and analyze time series data.
Installation¤
You can install the library via pip:
pip install ts-shape
Example Workflow¤
1. Import Modules¤
from ts_shape.loader.timeseries import parquet_loader
from ts_shape.transform.filter import boolean_filter
from ts_shape.transform.time_functions import timestamp_converter, timezone_shift
from ts_shape.features.stats import string_stats
2. Load Time Series Data¤
Load all parquet files from a given directory:
base_path = 'path/to/your/parquet/files'
df_all = parquet_loader.ParquetLoader.load_all_files(base_path)
3. Filter Data¤
Filter rows where the column is_delta
is True
:
df_is_delta = boolean_filter.IsDeltaFilter.filter_is_delta_true(df_all)
4. Convert Timestamps¤
Convert Unix nanosecond timestamps to timezone-aware datetime objects:
df_timestamp = timestamp_converter.TimestampConverter.convert_to_datetime(
dataframe=df_is_delta,
columns=['systime', 'plctime'],
unit='ns',
timezone='UTC'
)
5. Shift Timezone¤
Convert timestamps from UTC to local time (e.g., Europe/Berlin):
df_timestamp_shift = timezone_shift.TimezoneShift.shift_timezone(
dataframe=df_timestamp,
time_column='systime',
input_timezone='UTC',
target_timezone='Europe/Berlin'
)
Next Steps¤
- Explore feature extraction with
ts_shape.features
. - Chain multiple transformations into a pipeline.