timestamp_stats
timestamp_stats ¤
TimestampStatistics ¤
TimestampStatistics(
dataframe: DataFrame, column_name: str = "systime"
)
Bases: Base
Provides class methods to calculate statistics on timestamp columns in a pandas DataFrame. The default column for calculations is 'systime'.
count_null
classmethod
¤
count_null(
dataframe: DataFrame, column_name: str = "systime"
) -> int
Returns the number of null (NaN) values in the timestamp column.
count_not_null
classmethod
¤
count_not_null(
dataframe: DataFrame, column_name: str = "systime"
) -> int
Returns the number of non-null (valid) timestamps in the column.
earliest_timestamp
classmethod
¤
earliest_timestamp(
dataframe: DataFrame, column_name: str = "systime"
)
Returns the earliest timestamp in the column.
latest_timestamp
classmethod
¤
latest_timestamp(
dataframe: DataFrame, column_name: str = "systime"
)
Returns the latest timestamp in the column.
timestamp_range
classmethod
¤
timestamp_range(
dataframe: DataFrame, column_name: str = "systime"
)
Returns the time range (difference) between the earliest and latest timestamps.
most_frequent_timestamp
classmethod
¤
most_frequent_timestamp(
dataframe: DataFrame, column_name: str = "systime"
)
Returns the most frequent timestamp in the column.
count_most_frequent_timestamp
classmethod
¤
count_most_frequent_timestamp(
dataframe: DataFrame, column_name: str = "systime"
) -> int
Returns the count of the most frequent timestamp in the column.
year_distribution
classmethod
¤
year_distribution(
dataframe: DataFrame, column_name: str = "systime"
) -> pd.Series
Returns the distribution of timestamps per year.
month_distribution
classmethod
¤
month_distribution(
dataframe: DataFrame, column_name: str = "systime"
) -> pd.Series
Returns the distribution of timestamps per month.
weekday_distribution
classmethod
¤
weekday_distribution(
dataframe: DataFrame, column_name: str = "systime"
) -> pd.Series
Returns the distribution of timestamps per weekday.
hour_distribution
classmethod
¤
hour_distribution(
dataframe: DataFrame, column_name: str = "systime"
) -> pd.Series
Returns the distribution of timestamps per hour of the day.
most_frequent_day
classmethod
¤
most_frequent_day(
dataframe: DataFrame, column_name: str = "systime"
) -> int
Returns the most frequent day of the week (0=Monday, 6=Sunday).
most_frequent_hour
classmethod
¤
most_frequent_hour(
dataframe: DataFrame, column_name: str = "systime"
) -> int
Returns the most frequent hour of the day (0-23).
average_time_gap
classmethod
¤
average_time_gap(
dataframe: DataFrame, column_name: str = "systime"
) -> pd.Timedelta
Returns the average time gap between consecutive timestamps.
median_timestamp
classmethod
¤
median_timestamp(
dataframe: DataFrame, column_name: str = "systime"
)
Returns the median timestamp in the column.
standard_deviation_timestamps
classmethod
¤
standard_deviation_timestamps(
dataframe: DataFrame, column_name: str = "systime"
) -> pd.Timedelta
Returns the standard deviation of the time differences between consecutive timestamps.
timestamp_quartiles
classmethod
¤
timestamp_quartiles(
dataframe: DataFrame, column_name: str = "systime"
) -> pd.Series
Returns the 25th, 50th (median), and 75th percentiles of the timestamps.
days_with_most_activity
classmethod
¤
days_with_most_activity(
dataframe: DataFrame,
column_name: str = "systime",
n: int = 3,
) -> pd.Series
Returns the top N days with the most timestamp activity.