numeric_stats
numeric_stats ¤
NumericStatistics ¤
NumericStatistics(
dataframe: DataFrame, column_name: str = "systime"
)
Bases: Base
Provides class methods to calculate statistics on numeric columns in a pandas DataFrame.
column_mean
classmethod
¤
column_mean(
dataframe: DataFrame, column_name: str
) -> float
Calculate the mean of a specified column.
column_median
classmethod
¤
column_median(
dataframe: DataFrame, column_name: str
) -> float
Calculate the median of a specified column.
column_std
classmethod
¤
column_std(dataframe: DataFrame, column_name: str) -> float
Calculate the standard deviation of a specified column.
column_variance
classmethod
¤
column_variance(
dataframe: DataFrame, column_name: str
) -> float
Calculate the variance of a specified column.
column_min
classmethod
¤
column_min(dataframe: DataFrame, column_name: str) -> float
Calculate the minimum value of a specified column.
column_max
classmethod
¤
column_max(dataframe: DataFrame, column_name: str) -> float
Calculate the maximum value of a specified column.
column_sum
classmethod
¤
column_sum(dataframe: DataFrame, column_name: str) -> float
Calculate the sum of a specified column.
column_kurtosis
classmethod
¤
column_kurtosis(
dataframe: DataFrame, column_name: str
) -> float
Calculate the kurtosis of a specified column.
column_skewness
classmethod
¤
column_skewness(
dataframe: DataFrame, column_name: str
) -> float
Calculate the skewness of a specified column.
column_quantile
classmethod
¤
column_quantile(
dataframe: DataFrame, column_name: str, quantile: float
) -> float
Calculate a specific quantile of the column.
column_iqr
classmethod
¤
column_iqr(dataframe: DataFrame, column_name: str) -> float
Calculate the interquartile range of the column.
column_range
classmethod
¤
column_range(
dataframe: DataFrame, column_name: str
) -> float
Calculate the range of the column.
column_mad
classmethod
¤
column_mad(dataframe: DataFrame, column_name: str) -> float
Calculate the mean absolute deviation of the column.
coefficient_of_variation
classmethod
¤
coefficient_of_variation(
dataframe: DataFrame, column_name: str
) -> float
Calculate the coefficient of variation of the column.
standard_error_mean
classmethod
¤
standard_error_mean(
dataframe: DataFrame, column_name: str
) -> float
Calculate the standard error of the mean for the column.
describe
classmethod
¤
describe(dataframe: DataFrame) -> pd.DataFrame
Provide a statistical summary for numeric columns in the DataFrame.
summary_as_dict
classmethod
¤
summary_as_dict(
dataframe: DataFrame, column_name: str
) -> Dict[str, Union[float, int]]
Returns a dictionary with comprehensive numeric statistics for the specified column.
summary_as_dataframe
classmethod
¤
summary_as_dataframe(
dataframe: DataFrame, column_name: str
) -> pd.DataFrame
Returns a DataFrame with comprehensive numeric statistics for the specified column.