timeseries_shaper.filter.custom_filter

 1from ..base import Base
 2import pandas as pd
 3
 4class CustomFilter(Base):
 5    @classmethod
 6    def filter_custom_conditions(cls, dataframe: pd.DataFrame, conditions: str) -> pd.DataFrame:
 7        """
 8        Filters the DataFrame based on a set of user-defined conditions passed as a string.
 9
10        This method allows for flexible data filtering by evaluating a condition or multiple conditions
11        specified in the 'conditions' parameter. The conditions must be provided as a string
12        that can be interpreted by pandas' DataFrame.query() method.
13
14        Args:
15        - dataframe (pd.DataFrame): The DataFrame to apply the filter on.
16        - conditions (str): A string representing the conditions to filter the DataFrame.
17                            The string should be formatted according to pandas query syntax.
18
19        Returns:
20        - pd.DataFrame: A DataFrame containing only the rows that meet the specified conditions.
21
22        Example:
23        --------
24        # Given a DataFrame 'df' containing columns 'age' and 'score':
25        >>> filtered_data = CustomFilter.filter_custom_conditions(df, "age > 30 and score > 80")
26        >>> print(filtered_data)
27
28        Note:
29        - Ensure that the column names and values used in conditions match those in the DataFrame.
30        - Complex expressions and functions available in pandas query syntax can also be used.
31        """
32        return dataframe.query(conditions)
class CustomFilter(timeseries_shaper.base.Base):
 5class CustomFilter(Base):
 6    @classmethod
 7    def filter_custom_conditions(cls, dataframe: pd.DataFrame, conditions: str) -> pd.DataFrame:
 8        """
 9        Filters the DataFrame based on a set of user-defined conditions passed as a string.
10
11        This method allows for flexible data filtering by evaluating a condition or multiple conditions
12        specified in the 'conditions' parameter. The conditions must be provided as a string
13        that can be interpreted by pandas' DataFrame.query() method.
14
15        Args:
16        - dataframe (pd.DataFrame): The DataFrame to apply the filter on.
17        - conditions (str): A string representing the conditions to filter the DataFrame.
18                            The string should be formatted according to pandas query syntax.
19
20        Returns:
21        - pd.DataFrame: A DataFrame containing only the rows that meet the specified conditions.
22
23        Example:
24        --------
25        # Given a DataFrame 'df' containing columns 'age' and 'score':
26        >>> filtered_data = CustomFilter.filter_custom_conditions(df, "age > 30 and score > 80")
27        >>> print(filtered_data)
28
29        Note:
30        - Ensure that the column names and values used in conditions match those in the DataFrame.
31        - Complex expressions and functions available in pandas query syntax can also be used.
32        """
33        return dataframe.query(conditions)
@classmethod
def filter_custom_conditions( cls, dataframe: pandas.core.frame.DataFrame, conditions: str) -> pandas.core.frame.DataFrame:
 6    @classmethod
 7    def filter_custom_conditions(cls, dataframe: pd.DataFrame, conditions: str) -> pd.DataFrame:
 8        """
 9        Filters the DataFrame based on a set of user-defined conditions passed as a string.
10
11        This method allows for flexible data filtering by evaluating a condition or multiple conditions
12        specified in the 'conditions' parameter. The conditions must be provided as a string
13        that can be interpreted by pandas' DataFrame.query() method.
14
15        Args:
16        - dataframe (pd.DataFrame): The DataFrame to apply the filter on.
17        - conditions (str): A string representing the conditions to filter the DataFrame.
18                            The string should be formatted according to pandas query syntax.
19
20        Returns:
21        - pd.DataFrame: A DataFrame containing only the rows that meet the specified conditions.
22
23        Example:
24        --------
25        # Given a DataFrame 'df' containing columns 'age' and 'score':
26        >>> filtered_data = CustomFilter.filter_custom_conditions(df, "age > 30 and score > 80")
27        >>> print(filtered_data)
28
29        Note:
30        - Ensure that the column names and values used in conditions match those in the DataFrame.
31        - Complex expressions and functions available in pandas query syntax can also be used.
32        """
33        return dataframe.query(conditions)

Filters the DataFrame based on a set of user-defined conditions passed as a string.

This method allows for flexible data filtering by evaluating a condition or multiple conditions specified in the 'conditions' parameter. The conditions must be provided as a string that can be interpreted by pandas' DataFrame.query() method.

Args:

  • dataframe (pd.DataFrame): The DataFrame to apply the filter on.
  • conditions (str): A string representing the conditions to filter the DataFrame. The string should be formatted according to pandas query syntax.

Returns:

  • pd.DataFrame: A DataFrame containing only the rows that meet the specified conditions.

Example:

Given a DataFrame 'df' containing columns 'age' and 'score':

>>> filtered_data = CustomFilter.filter_custom_conditions(df, "age > 30 and score > 80")
>>> print(filtered_data)

Note:

  • Ensure that the column names and values used in conditions match those in the DataFrame.
  • Complex expressions and functions available in pandas query syntax can also be used.
Inherited Members
timeseries_shaper.base.Base
Base
dataframe
get_dataframe